(2y)^2+y^2=100^2

Simple and best practice solution for (2y)^2+y^2=100^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2y)^2+y^2=100^2 equation:



(2y)^2+y^2=100^2
We move all terms to the left:
(2y)^2+y^2-(100^2)=0
We add all the numbers together, and all the variables
3y^2-10000=0
a = 3; b = 0; c = -10000;
Δ = b2-4ac
Δ = 02-4·3·(-10000)
Δ = 120000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120000}=\sqrt{40000*3}=\sqrt{40000}*\sqrt{3}=200\sqrt{3}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-200\sqrt{3}}{2*3}=\frac{0-200\sqrt{3}}{6} =-\frac{200\sqrt{3}}{6} =-\frac{100\sqrt{3}}{3} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+200\sqrt{3}}{2*3}=\frac{0+200\sqrt{3}}{6} =\frac{200\sqrt{3}}{6} =\frac{100\sqrt{3}}{3} $

See similar equations:

| 3a-16=0 | | (3/4)(8j+12)=(1/4)j+(151/4) | | 7x+3=x=18 | | 4.5(5f-5)=37.5-7.5f | | (2y)^2+y^2=10000 | | 1/2(7+5)+2k+k=3 | | 5(6x-2)=3(8+x)-2 | | 7(x-4)+13=0 | | 2x+2x+3x+3x+x+x=360 | | 20x-12=14x+30 | | X(3x-8)=5 | | 57-3x=6x+21 | | 3x+21=8x-14 | | 7x-130=2x-10 | | 8x+18=90-4x | | -2=4x=-8+19x | | t÷5-2=14 | | 3+8x=10=x | | 9x=8x+90 | | 8b-10=120+4b | | 33x=x | | 7x÷3=2x-5 | | -2y+4y=40 | | (x/2)+7=x-12 | | 9m-13=68m= | | 11x-13=4x+11 | | x-0,2x=273 | | 2(3x+1)=3x+6 | | x÷6=6 | | |4x+8|+2=7 | | 12x-4^=0 | | X^2+3y=124 |

Equations solver categories